Categories
CrossFit Exercise selection Skill training Strength training The map or the territory Training theory

The map or the territory pt 2

In the realm of sports science what can be thought of as classical periodization was originally discussed by Russian scientist Leo Matveyev and further expanded upon by Stone and Bompa. Periodization is a logical method of organizing training into sequential phases and cyclical time periods in order to increase the potential for achieving specific performance goals. All while minimizing the potential for overtraining.

Phase Potentiation is the strategic sequencing of programming phases to increase the potential of subsequent phases and to increase long term adaptive potential. Theoretically, using this concept, peak performance occurs in a controlled way as the phases are stacked on top of each other.

When examining the success of classical periodization concepts they fail to convince of their superiority over more concurrent approaches to the planning of training.

Not only are these long detailed and rigid plans vulnerable to unplanned periods of non-training – what do we do when the athlete gets ill? – but also that we just miss our mark, either on the resources available for training, or the speed of progress we ended up with. As we are working under either of the two false assumptions that averaged group-based trends accurately reflect likely individual responses, or that the individual response can be extrapolated to work for a group – our plan will only provide a false sense of security.

These methods with long cycles of mostly general work are also quite time consuming. For most sports disciplines, the packed competition schedule makes it difficult for coaches to adopt them, as there is simply not enough time during the season to improve poor form.

However, the most important drawback is their very low rates of effectiveness. When scientists have looked at the amount of athletes who are achieving the season’s best result at the seasons most important events, like World championships and Olympic games, the results are disheartening. Seldom if ever more than 1/4th of the athletes manage to deliver their top results for that season.

The theoretical and speculative “delayed training effect” concept assumes that training basic capacities at earlier phases of the training plan has positive effects on actual performance long after they are taken out of the training programs, replaced by more sport specific exercises. They also produce unwanted adaptations, such as significant decreases in power and speed abilities. Coaches might ask themselves whether basic training is a real basis for competitive performance, or whether it is a loss of precious time to athletes.

To be fair, basic training is not only done for peak performance but also for the sake of injury prevention. There is also plenty of evidence suggesting that what is likely responsible for a large proportion of non-contact, soft-tissue injuries is not training load as such, but rather excessive and rapid increases of them.

It is likely that the positive adaptations in muscles and tendons provided by longer periods of basic training may also be obtained by typical strength and power exercises. Exercises which can be implemented with little to no negative effects during the course of the season.

The stakes of unsuccessful performance at key competitions are high, with evidence suggesting that more severe psychological consequences are a distinct possibility. Failure to meet performance expectations include anxiety, interpersonal hypersensitivity and coach-athlete relationships falling apart.

“Speed is the most precious thing in swimming. It is what it is all about. I do not understand why you would spend weeks and months not training speed, then hoping it will come back when you taper and race. I believe you must always be within one second of your personal best time at all times of the year. That you must train for speed all year round. That your sprinters must sprint often and race regularly throughout the year.”

Gennadi Touretski

In the 90s the “Speed through Endurance” philosophy that reigned supreme in Australian swimming was challenged by the Russian coach Gennadi Touretski. This “more is more” philosophy was to work hard to first develop an aerobic base for 10 to 16 weeks (or even longer!), then to significantly reduce training volume close to the competition. The idea was that the more you swim, the more efficient you become and the more efficient you are the faster you can swim.

Touretski, the coach of one of the sports all time greats, Alexander Popov, was recruited to rejuvenate Australian swimming after a poor Olympic result and he did so by removing the (imaginary) certainty of linear adaptations provided by a base training phase.

He warned to assume speed will return once it is lost, and was wise doing so. The “delayed training effect” is not completely supported either by science or practice and its use as a tool to improve actual results are very unpredictable. There is simply not much basis to sustain the idea that the body is ordered into basic and specific capacities and that the overloading of a given basic capacity will suddenly “supercompensate” later in the training cycle.

When you have a capacity, you can certainly lose it (and haven’t we all experienced that). But that risk is way lower than the hope for you to gain a completely new capacity at a later point in time. For that reason he included speed training at all times of the training program, throughout all of the year.

“I think coaches do too many drills. Drills do not improve technique. They teach the basic movements of the stroke. To improve technique you must work with the individual swimmer, over a range of speeds, from slow to race speed and give them constant feedback about their technique, talk to them about how it feels and help them to develop their own technique. Every swimmer is different – every technique is different.”

Gennadi Touretski

Instead of general drills he believed that technique is a personal thing, and that training prescription should not be about doing a lot of general drills. Rather it should be about optimizing the technical efficiency of the stroke of the individual swimmer. Start with what you see, and practice what you see is needed for that particular athlete.

He would walk with his swimmers continuously throughout the session, ask them to swim initially at a slow speed, then have them progressively increase speed until he would notice a technique inefficiency. He would then describe rather than explain what happened and then figure out a cue to address the inefficiency he had seen.

There is plenty of evidence to support that increasing the physical load of training in the form of exercise intensity, volume or duration can be successful in order to enhance training adaptations.

When looking for the optimal adaptation found at the upper limit of tolerance, we expose ourselves to very small safety-margins of error. The presence of deep uncertainties linked to working with human beings challenges decision making by questioning the robustness of all purportedly optimal solutions. Knowledge about historical adaptation yields little to no information about how our “optimal” solution performs if the future surprises us, and they do not guide us to solutions that might work well if the predicted future does not come to pass.

Physical load can only be increased so much, and often this “progressively do more, do harder”-philosophy eventually pushes athletes into injury. And regardless of the progress made before this, injuries put and end to all progress.

Traditional methods for decision making require agreement about the current and future conditions and only then to analyze our decision options.

In a paper published by the World Bank on developing new processes for decision making under deep uncertainty, the research group suggested that alternative methodologies can help in managing uncertainty. These methods start the other way around by stress-testing options under a wide range of plausible conditions. All without requiring us to agree on which conditions are more or less likely, and against a set of objectives.

In the context of sports performance the traditional methodology would be to construct a training plan by starting out estimating the future capacity, form and other factors. For example to predict how much a specific squat cycle would increase squat numbers, and how much that in turn would affect sport performance in specific numbers. Only after these predictions are made we would evaluate the possible upside and downside under these assumptions.

This is problematic on two levels. First, many important assumptions are buried in models, rather than in front of decision makers and therefore vulnerable to bias. Second, many factors are difficult, if not impossible, to predict and risk to cause a gridlock in the decision process. 

As an alternative, we could identify the plan that is robust, working well across all the scenarios by “stress-testing” our options under a wide range of plausible conditions. All without requiring us to decide or agree upon which conditions are more or less likely.

This means to imagine different outcomes from many possible methods. Squat numbers increasing by 15kg, 10kg, 5kg, staying the same or even regressing. Which methods end up with the highest satisfaction and lowest regret under all possible outcomes, including high or low transfer to sport performance?

When faced with the possibility of multiple outcomes we will end up choosing “no-regret” or “low-regret” decisions. Decisions on reduced time horizons that have high utility no matter what the future brings. They will be more reversible and flexible, and have larger safety-margins.

In order to learn a skill, like the strict muscle-up as shown in the video above for example, do we really have to increase the physical training load? Or could we limit explanation and predictions in order to concentrate on when our athletes struggle now in the skill.

Continuously challenging the individual participant by progressively increasing task difficulty during long-term motor practice enhances motor learning and optimizes performance. Such progressive long-term adaptation to individual skill level not only enhances learning, but does so without necessarily increasing either the volume or the intensity of training.

Simplicity is key both for scalability and to see what is actually driving the trend without the distraction of too many variables. Managing a program of only slight changes and frequent evaluations allows for it to be data driven (as trend analysis is time-sensitive and time-powered).

All of this seems to suggest to use different, not more and often but little-approaches rather than to speculate on theoretical basic capacities, then build a base and to expect linear adaptations.

The old “more is more” approach is still very much ingrained in our way of thinking and planning. That is quite obvious when one looks at and listen to coaches who would subscribe to these theories of learning, but often still feel obliged to offer a progression of physical overload throughout their athletes cycles. Change is quite hard.

Is this the perfect progression to learn or strengthen a skill? Certainly not!

If anything should be clear by now it is that there will always be cases that are different from all other cases. Every method has its place. 

I can also picture you thinking that, well, “those examples you have given are too easy. Sure, in strength sports you can get away with performing the specific skill, not something more basic or different, but simply overloaded at the level that the athlete is, but what about other sports not practiced with a barbell or a set of rings?”. Well, stay tuned for more examples of practical implementations of these principles in part 3.

I’ll leave you with the words of the great Touretski, who may have passed on last year, but whose actions and words hopefully will live on for long.

Dare to be different. Doing the same thing as everyone else is a doomed strategy and a flawed philosophy.

Categories
CrossFit Exercise selection The map or the territory Training theory Weightlifting

The map or the territory pt 1

“In early life I thought of studying economics, but had found it too difficult!”

Max Planck

In order to optimize performance, training theory has followed it’s fellow scientific endeavors looking deeper and deeper into details of their fields of study in a search for more detailed models of the world. These models are thought to provide more insight into underlying factors of performance. By uncovering them we can then design more meaningful training interventions. This manifests itself in metaphors like “the man as a machine”.

Similar to what Sigmund Freud did in psychology, when he presented the idea that thoughts and emotions outside of our awareness continue to exert an influence on our behavior. Even though we are unconscious of these underlying influences, physiology too has focused on hidden thresholds and reduced causal models of explanation for performance. The hope is to create better and more stable athletes built “from the ground up” and upon more basic conditions for performance than what can be seen with the eye alone.

While this project certainly has merits, it can also obscure the vision from what is “hidden in plain sight”. When searching for what is within and by looking deeper behind what is apparent, you will lose sight of how a scientific area is connected to other scientific areas: how things “just work” in the common world. When one has dug a deep enough hole, he can no longer see over the edge.

Complex biological systems (nature, humans…) are characterized by the fact that they consist of lots of interconnected dependencies in the different parts of its whole. A system constantly exposed to both sensitivity and noise, and a system of constant change.

It’s also quite easy to get stuck in a loop of trying to uncover more and more of these underlying factors, rather than to carry on with whatever knowledge we already have at the moment.

Better than using a detailed map to navigate an ever-changing landscape, like a glacier, would be to routinely triangulate your position and endure living with the degree of inaccuracy and uncertainty that comes with not knowing exactly where you are. Even though the belief in the perfect map gives a sense of security, it is a false feeling that risks leaving us blind to what is actually happening.

Simply observing what we have in front of us is often hard to do.

In order to be able to compare efforts and athletes we usually take the leap from qualitative observation to quantitative data collection, and by doing so removing them further away from the context where they were observed. How do you quantify “fast” or “slow” or “hard” or “easy” without delimiting them by turning them into numbers? Numbers fit so much better in spreadsheets for statistical analysis.

Not only are we by doing so removing the effort out of its context, we are also risking to try to affect these new numbers rather than the situation they emerged in.

You don’t want your planes to get shot down by enemy fighters, so you armor them. More armor makes a plane heavier and heavier planes are less maneuverable. They also use more fuel. Armoring planes too much is a problem; armoring planes not enough is also a problem.

During the second world war the American army was studying the planes returning from battle and kept reinforcing the areas of the planes that had the highest number of bullet holes. However, more and more planes were lost despite their added protection.

This continued until the statistician Abraham Wald noted that the military only considered the aircraft that had survived their missions. Since they didn’t, or couldn’t, look at the specific battle situations where shots were fired, they failed to see the planes now rendered unavailable from assessment. Wald instead asked: where are there no bullet holes at all?

As aiming at moving planes is not that easy, especially in those times, he figured that the damage would have been spread quite equally all over the plane. Since this did not adhere to the observations, he was fairly sure he knew where the missing bullets were: on the missing planes.

The reason planes were coming back with fewer hits to the engine is that planes that got hit in the engine weren’t coming back. The armor, he said, shouldn’t go where the bullet holes are, but quite the opposite, where the bullet holes aren’t.

At the end they managed to logically figure out a way of protecting their planes. But all of this would have been quite clear if they had not only looked at the data, but also kept an eye on the actual action.

“Mathematics is the source of a wicked intellect that, while making man the lord of the earth, also makes him the slave of the machine.”

Robert Musil

The technology to measure oxygen consumption first arose in the early 1920’s. Using that ability Hill and Lupton found that there appeared to be a maximum limit to oxygen consumption, when despite increases in speed, their VO2 consumption did not also increase any more.

After this most studies in exercise science have been evaluated on the resulting change in VO2max rather than actual performance (such as ability to stay with a breakout, handling of different sections of a race, movement form or even something simple as average speed over a distance). VO2max is less variable and more tolerant to changing conditions. It also happens to fit well into columns of spreadsheets.

As outcomes are increasingly measured by a specific construct, they start to shape the outcomes themselves. Researching training interventions using this or that variable as the standard of success, will slowly shift the training interventions to strengthen just that variable rather than something else. They become self-reinforcing as you will always find more of what you are looking for, and less of what you don’t. Even though that variable might have a very poor transfer on actual sports performance (or health for that matter).

Whenever a new parameter is discovered or introduced, a large degree of emphasis is put on that parameter in the research.

Several new ways of taking measurements of biological processes have had similar impact. With the ability to portably test lactate, research was centered on ways to improve lactate threshold. With the ability to measure force, other variables came into the limelight, such as Functional threshold power or Critical power.

If we all agreed on what math problem we were trying to solve, then we can sit down together and say, hey let’s calculate! But sport and life is messy. We might not agree on what we’re trying to optimize and we also have a lot of uncertainty about what the consequences of our actions will be. 

Even with access to great data, not everything’s an optimization problem. Ultimately it is crucial that we understand the limits of the technology we leveraged to help us to navigate our complex world and the values that often invisibly determine how we use it.

“For years we have seen study after study attempting to compartmentalize intensity domains based on an assumption that there is some physiological decompensation point. However we reach no clear consensus on this. First it was MLSS. Then VO2 kinetics. Then FTP and CP, but none are conclusive. Perhaps we are looking for something that isn’t there.”

Dr. Jeroen Swart

We are starting to see why Max Planck, awarded the Nobel Prize, once said that he saw economics as a harder discipline than his own field of theoretical physics: due to the inherent need for subjective judgments. Dealing with humans, is dealing with unpredictability. This could certainly be said about exercise science too.

We often think of these measurable physiological variables as clear cut, defined markers. We use them to train at different thresholds and to classify our training as such. We assume that the transition is clear and that these parameters represent some sort of boundary line, and that improving them leads to better performance.

All of the above mentioned concepts can be helpful, and used to organize and guide training but we need to understand that they do not by themselves represent increased performance. That they do not represent a clearly defined transition. Physiology is complex and messy.

There is no sport of highest VO2max, Critical Power or peak wattage. We should not be so in love with a measurement so that we forget to look at how an athlete handles specific situations of their sports.

”I’ve seen things you people wouldn’t believe. Attack ships on fire off the shoulder of Orion. I watched C-beams glitter in the dark near the Tannhäuser Gate. All those moments will be lost in time, like tears in rain.”

Roy Batty, “Blade Runner”

When you put a pot of liquid water on the stove it is in a steady state. All of the collective molecules exist in liquid form. As soon as you begin applying heat and pressure the state begins to change. At any given point in time we are unable to predict which molecules will make the transition. They exist at the edge of chaos. Provide enough heat and pressure and over time and they will eventually turn into a gas.

Complex systems, such as humans, have interesting properties. Strong interactions between their parts, feedback, emergence, self-organisation, adaptation, growth, change. None of these are a simple linear process. Large interventions in a variable does not necessarily have a large effect on the expected variable of interest. Similarly, a small intervention can have large and unexpected outcomes. Just like a “perfect storm” – a combination of circumstances drastically aggravates the event.

At first this unpredictability is hard to reconcile with. But maybe it’s not necessary to know exactly how a specific performance in such a system emerges?

Continuing with the “perfect storm” analogy, it might be important to provide individuals with periodic interventions that are delivered under varying “atmospheric” (i.e., psychological or life states) conditions. This means providing repeated opportunities to practice this self-organization under realistic conditions.

Consider “Chinese water torture” – a drop of water continuously hitting the same spot on your head for a long time would not bother you at all, but eventually it would change your behavior completely (driving you mad, so don’t use the analogy literally with your athletes).

“We must do away with all explanation, and description alone must take its place [..] The problems are solved, not by giving new information, but by arranging what we have always known

Ludwig Wittgenstein

Start with what you see. When do athletes struggle in racing or during competition? Describe those situations without explaining why they happen. Separate these situations in the training program and practice them with some variation.

The level of difficulty and overload should not be too high. This might push the system into interpreting the situation as something altogether different from the game-day skill. But not so little that the athlete can complete every repetition with a 100% accuracy (how could a system operating perfectly be pushed into change?).

To practice “what you see the need for” has a few advantages over to base training prescription on hidden underlying qualities

  • By doing so you will measure its success by exactly the outcome which you want to improve. This prevents you from getting lured in a separate direction by confusing some other variable with performance on the field. Every improvement will have a large transfer from training to performance, making small increases in capacity highly valuable.

  • You will move into a territory of training which your athletes are familiar with. This helps communication between the two of you. Communication should not be under-valued. When coaches speak the language of science only, how can athletes be expected to understand the drills they are given? You are more likely to get success telling your athlete to “sprint out of that corner as if you would like to get a gap on your opponent” rather than something along the lines of what percentage of VO2 or speed to hit.

    It will also help you to get relevant discussions on how to tweak the drills. Although athletes might be lacking in scientific knowledge, they tend to know a fair bit about their sports, and these discussions easily extend into how to use the skills you have been working on when discussing tactics.

The downside is of course that you will have to be open with the fact that all you can offer is educated and well-founded guesses. That there is no magic pill. That all the certainty there is to find is that continually doing the things you wish to improve at over time, with some variance and with some overload is what might increase your capacity (mostly by ways of a sudden phase-transition).

If I could have gotten one dollar every time someone asked me for an assistance exercise for a problem – let’s take the execution of the weightlifting movement of the snatch for instance – and seen the disappointment in their eyes when my first choice of exercise was to do exercises not completely different from with is done in that movement. I’d rather pick an exercise to emphasize or correct the point of the lift where I felt the problematic outcome initially did arise.

This places a lot of demand on the coaches communication skills in order to get the buy-in from the athlete. A buy-in which you could have gotten by dangling a mathematical carrot on a stick in front of the athlete. It will also in my experience bring about more compliance and less injuries when you get the athletes involved in the actual process.

I started working with this young and gifted athlete from Portugal a few years back. He had made the transition from Volleyball into CrossFit where he now had some success, qualifying and performing well at the 2018 Regionals. He also struggled with some of the integral movements of the sport, such as the weightlifting movements – most noticeably the snatch.

He was catching most of his Snatches in front of him, forcing him out of balance. Unfortunately we live at quite some distance and cannot do better than to have close contact over the internet. After a lot of questions and answers and sending videos back and forth we agreed that he had trouble already at the starting position, struggling to find initial balance against the floor. This in turn leads to his position being too upright when the bar passes the knee. His joints then are not properly set up to allow him to hit what in weightlifting is often referred to as the Power position

Without going into too much detail, the Power position allows for rapid extension of the knee and hip along with plantar flexion, in a sequence called the proximal-to-distal sequence, where extension on the joints one by one allows at least one joint to have a favorable translation relationship throughout the full extension. The failure to hit this position can force the barbells necessary vertical movement slightly forward, getting the lifter into all kinds of problems catching it.

Over the coming period we did quite a lot of

  • Snatches from power position, with clear instructions on what would constitute a “good rep”, having him to learn and discover on how to generate force from that position. If he could not move from this position without a slight “swinging motion” or if he had to jump forward in the catch he would know that he did not find his Power position properly.
  • Snatch deadlifts, playing with and learning how balance felt. (Balance is tough, as it is really the absence of feeling. Athletes sometimes tend to seek out more distinctive tension, something they feel, as you would find when you are more on your heels or on your toes)
  • From knee to power position and from floor to power position.
  • Full snatches involving the feeling for positions he learned by the above exercises.

Slower, faster… Mixing it up with some fatigue and eventually hitting the positions and moving between them became more second nature for him. 

Not once did we do any movement that was fundamentally different from the movement that he struggled with, hoping to increase some “underlying quality” possibly holding him back. Surely, we still trained those underlying qualities, if they existed, by overloading and stressing the movement that involved them. With the added benefit of a more direct transfer and possibly better understanding and feedback of his process.

We also did not measure the performance of the assistance exercises, more than if they successfully challenged the positions where we thought we saw a lack of efficiency and balance. They were always viewed in the light of the performance of the full snatch.

João has gotten more proficient with this movement: here he is, at the end of a 30 minute workout, hitting a 110kg Snatch, rowing 500m in 1 minute and 40 seconds (something not done without breathing hard), then hitting another 110kg snatch just after coming off the rower something that he could not do in isolation before.

Is this the best way to conduct training? Certainly not always! There will always be cases that are different from all other cases. Every method has its place. 

It is a simple process helping you not to get completely lost in the “data” jungle, or if you are, to find your way back onto the field, where the actual athletes live.

Stay tuned for more examples of practical implementations of these principles in part 2.

Categories
CrossFit Embracing uncertainty Training theory

Embracing uncertainty pt 2: The built-in benefits of CrossFit

When learning movement there must be room for self-organization of the motor patterns forming this movement. Otherwise we would only learn how to perform a very specific movement in a very set environment. Variation serves the important purpose of managing fatigue levels and to increase motivation, but also for learning flexible patterns allowing us for solving task specific movement.

It has been shown to improve the rate of learning of skills to have either a non-systematic (random) or a non-consecutive order (serial) order of execution of skills compared to the more perfect organization of practice that a blocked practice provides.

Over-prescriptive coaching may be detrimental to learning. Everyone will have their personal “best solution”, which while looking somewhat general, still must be constructed on the resources of the specific individual. And this individual solution will emerge and stabilize more quickly if we disregard the urge to try to force the process. What coaches should do is to use their understanding of how to manipulate movement constrictions and key factors that underpin performance to provide understanding on what a successful outcome would be. To use their trained eye to help shape the learners performances through guided discovery and self-exploration. Not overly telling “how to do it” but “what to do” in a movement that seems likely to learn. And then – and this might be the hardest thing to do for us coaches – to back off in order for learning to happen.

It has also been shown that practice in dyads, as compared to individual practice, can enhance motor learning and increase the efficiency of practice

Knowing this, one can clearly see how facilitated group training, with an knowledgeable coach in control of the practice setup and individual movement constraints together with a group of individuals, operating in a culture that allows for exploring those movements in a non-perfect fashion could be quite successful at skill acquisition.